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Abstract—In the problem of autonomous transport of de-
formable objects, we propose a multirobot approach for steering
a large object to a target configuration (object dimensions,
orientation and position). Firstly, we present a deformation model
based on the evolution over time of the dimensions and rotation of
the object’s bounding box. We consider the object is grasped by
a set of mobile robots with double-integrator dynamics. Then,
we propose a set of nominal controllers that allows reaching
a desired configuration of the bounding box that models the
deformable object. In order to prevent collisions of the object
with static or dynamic obstacles, we formulate a control barrier
function (CBF) that exploits our deformation model. Finally, we
integrate the nominal controllers and the CBF into a quadratic-
programming controller, which includes overstretching avoidance
and velocity constraints. We report simulation results to show the
performance of this approach in different test scenarios.

Index Terms—Deformable models, multirobot systems, trans-
portation, collision avoidance, optimization.

I. INTRODUCTION

TRANSPORT and manipulation of deformable objects
involve tasks that are complex even for human operators.

Automation of these tasks requires to deal with different chal-
lenges, which range from measuring deformation of the object
to coordinating different robots for achieving the manipulation
goals [1]. Despite their complexity, autonomous systems for
transport and manipulation of deformable objects can improve
the safety of workers and the efficiency of processes in
industrial, medical and domestic contexts, among others [2].
In particular, we consider transport tasks of large deformable
objects that must be steered to a target configuration, while
avoiding collisions. This represents a paradigmatic case of
industries such as the textile or the footwear manufacturing
ones, where large fabric parts are transported and progressively
transformed between different working stations. Other sectors
that could also obtain potential benefits from this approach
include construction and logistics. Modern construction tech-
niques incorporate composite materials that are reinforced with
layers of fabric, which could be transported and applied by
robotic teams. As for the logistics sector, the ability to handle
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Fig. 1. Elastic sheet (blue mesh), held by four grippers (large spheres), and its
bounding box, formed by the red lines that intersect between them. The main
parameters of the bounding box (BB) are: the centroid c, the dimensions dx,
dy and dz , and the orientation around the vertical axis θ. A grasping point
pi and the BB x-y-z reference frame in c are also depicted.

deformable goods with autonomous systems could increase the
storage capacity and would reduce the cost of rigid packaging.

When manipulating deformable objects that are large, frag-
ile, heavy or difficult to grasp, multiple manipulators are
usually required [3]. Multirobot systems extend the robust-
ness and resilience of the single agent methods, which are
more sensitive to perturbations, but the control actions must
be tightly coordinated due to the nature of the tasks [4].
We refer to robustness as the capability of a system to
work under disturbances that do not cause structural changes
on the system, and resilience as the ability of a system
to autonomously recover its original function from external
and/or internal disturbances, which cause an interruption in
the normal operation of the system [5]. Works dealing with
multirobot transport of deformable objects include a pioneer
approach for nonholonomic manipulators based on nonsmooth
Lyapunov functions, with guaranteed collision avoidance [6].
In that proposal, deforming the object is the means to avoid
obstacles, but it is not a control goal by itself and any feasible
deformation state is expected. Another study describes the
design of a table with multiple actuators, with caterpillar
locomotion-based mechanisms, for manipulation and transport
of delicate objects [7]. Simultaneous control of the shape,
scale, rotation and position of a formation of robots carrying
a deformable object, is achieved with a formation control
method [8]. If some specific shape and scale are required,
deformation of the object in 2D can be explicitly controlled in
that work. A different approach for simultaneous transport and
shape control was developed for robots with non-holonomic
constraints [9]. Those methods do not tackle the problem of
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explicitly controlling the deformation of the object in 3D, and
they do not consider collision avoidance in their formulation.
We can also find approaches based on Dynamic Movement
Primitives (DMP) [10] or human-robot collaborative systems
for transport of highly deformable planar materials [11], which
do not test collision avoidance against dynamic obstacles.

Despite being challenging, modeling deformation is a fun-
damental step in manipulation of deformable objects. There
are many available approaches for this purpose, ranging from
the well-known finite element method to the more recent deep
learning-based developments [12]. One of the main differences
between our proposal and the deep learning methods, which
are very popular nowadays, is the required amount of infor-
mation. Compared to our approach, they require more data for
being trained to accomplish the desired task, and it is more
difficult to predict the behavior of neural networks. In our
work, we choose a geometric model based on a deformable
bounding box of the object. Different variants of this concept
have been exploited in the past. A 2D version, called outlined
rectangle, has been considered to obtain a convenient shape
of the multirobot transportation system in previous studies
[13], [14]. Similarly, the 2D deformable box is adopted in
a motion planning strategy for approximating the shape of a
team of manipulators and the transported rigid payload [15].
Another study about probabilistic roadmap motion planning
for deformable robots obtains the deformation of the robot
from a deformed bounding box [16]. A deformable bounding
box with variable width is also utilized to describe the shape of
an hexapod robot for navigation through confined spaces [17].
None of these previous works obtains a deformable bounding
box model in 3D as the one we propose. Our approach
allows predicting the evolution of the three dimensions of the
bounding box under a specific set of control actions.

Guaranteeing safety under uncertainties and unexpected
events constitutes one of the greatest concerns in robotics.
Collision avoidance is a classical safety problem, which has
been solved with different optimization techniques, such as
sequential convex programming [18], [19] and model predic-
tive control (MPC) [20], [15], to name a few. Control barrier
functions (CBFs) represent a powerful tool for keeping the
state of a system in the safe region. They can be applied to
restrict the outputs from the nominal controller of a system,
which potentially can induce unsafe behaviors (e.g. collisions).
Collision avoidance systems based on this technique have been
developed for systems of multiple mobile robots [21] or UAVs
[22], [23].

The method we propose builds upon our previous proposal
for multirobot transport of deformable objects with minimal
motions [24]. In contrast to this former study, the 3D de-
formable bounding box model is now built in terms of accel-
erations. Even though the new model has the same structure,
the dynamics of the grippers are significantly different with
respect to the single integrator alternative. Also in [24] the
model was not exploited to have direct control over the shape
and orientation around the vertical axis of the object’s BB.
Another difference is that in the former study the motion
of the transported object was constrained to a given route,
but in the present work the route is computed online by

the Q-P controller. Additionally, the new collision avoidance
system based on the CBF is more robust and effective than
the previous system, in which a nonlinear optimization was
developed. The new system allows transporting a deformable
object in 3D environments to a desired position, without
collisions, while simultaneously deforming and rotating it to
the desired dimensions and orientation, without overstretching
the object during the process. Our main contributions in the
present study are the deformable bounding box model for mo-
bile manipulators with double-integrator dynamics, the CBF
formulation for collision avoidance between the deformable
object and static or dynamic obstacles, and the quadratic-
programming (Q-P) controller, which integrates the nominal
controllers with the CBF and additional safety constraints.

II. PROBLEM STATEMENT

Let us consider a deformable object to be transported in a
3D environment by N ≥ 3 mobile robots, which move on
the floor following double-integrator dynamics. Each robot
mounts a rotational-free gripper that grasps a set of points
pi ∈ R3, i = 1, ..., N in the object boundary. We model the
object shape by its ground-parallel bounding box, defined as
follows [24]:

Definition 1: Ground-parallel bounding box. The ground-
parallel bounding box (BB) is a box that contains the object
and whose top and bottom faces are parallel to the ground
plane. It is defined by its centroid c ∈ R3, the box dimensions
d = [dx, dy, dz]

ᵀ and the box orientation around the vertical
axis θ = [0, 0, θ]ᵀ. d and θ are expressed in the BB reference
frame, with origin in c and whose axes are perpendicular to
the BB faces.

This structure is oriented around the main plane of motion in
our problem, and therefore considers the rotations with greater
impact in the transport task. Note that the rotations around the
remaining axes, with much lower impact, are not included as
a design criterion to reduce the dimensionality of the problem.
However, we will show that 4 degrees of freedom (x, y and
z dimensions and rotation around z) add flexibility to avoid
obstacles in 3D, while offering a wide range of possible control
configurations. We obtain the BB of the object from a set of
points vm, m = 1, ...,M measured on its surface, by means
of range sensors or fiducial markers. We do not need these
points to be accurate, as long as they represent an approximate
shape of the transported object.

We consider that there are obstacles in the environment,
described by a set of points qj ∈ R3, j = 1, ..., J and
detected by the system with onboard range sensors, up to a
limit distance R.

The task we envision consists in steering the BB of the
grasped object without collisions to a target configuration,
defined as the combination of position, dimensions, and ori-
entation. This can be understood as a conventional transport
process (i.e. translating the object from one place to another)
with additional control over the shape and orientation of the
object along translation. We propose the following errors to
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assess the completion of this task:

ec = c− ct , (1)
ed = d− dt , (2)
eθ = θ − θt , (3)

where ct ∈ R3 is the target position of the BB centroid, which
is set in the 2D plane (the z coordinate is ignored), dt ∈ R3

are the target dimensions of the BB and θt is the target BB
orientation around the vertical axis.

III. DEFORMABLE BOUNDING BOX MODEL

A. Model description

In this section we define the object deformation model
considered in our study. The model is based on the deformable
bounding box paradigm, which extends the concept of BB
(Definition 1) with new properties.

Definition 2: Deformable bounding box. The deformable
bounding box (DBB) is the BB whose dimensions and rotation
change over time when certain actions are applied to the
object. These actions are traction/compression accelerations in
the horizontal plane G̈ = [G̈x, G̈y, 0]ᵀ and vertical rotation
acceleration φ̈ = [0, 0, φ̈]ᵀ. As the object deforms, the DBB
evolves smoothly between consecutive time instants.

The process for obtaining this kind of BB starts by comput-
ing the ground-parallel minimal bounding box of the object.
The ground-parallel minimal bounding box is equivalent to
the extrusion of the 2D minimal bounding box of the object
along the object’s height. Then, we obtain the BB reference
frame with origin in c whose axes are perpendicular to the
BB faces. Note that the bounding box this model requires
does not correspond to the ground-parallel minimal bounding
box, whose dimensions and orientation may present sharp
changes over time. Therefore, the next step involves applying
Principal Component Analysis (PCA) to the collection of
vectors vbm = vm − c, ∀m. These vectors are stacked
in the matrix Vb ∈ RM×3, which after applying the PCA
yields Vb = USVᵀ. We can obtain the principal direction
in the horizontal plane of the points in the global reference
system as ϕ = atan2(V2,1, V1,1), where the subscripts denote
the corresponding elements of the matrix. In this case, the
principal direction of the points in 2D constitutes a line that
minimizes the distance to them. In the following deformation
instants the angles between the principal direction and the
horizontal axes of the BB reference will be preserved, which
means that the orientation of the BB around the vertical axis
will follow the evolution of the principal direction of the object
in the horizontal plane. The principal direction represents a
convenient reference for orienting the BB, due to the fact
that it varies as smoothly as the object points do. Then, the
orientation of the BB can be computed as θk = θ0−ϕ0 +ϕk.
Finally, the dimensions d of the BB are computed from the
maximum and minimum coordinates of the points vm in the
new BB reference frame.

We build the object deformation model upon Definition 2
in the following manner:

[
d̈ᵀ, θ̈

]ᵀ
= J

[
G̈x, G̈y, φ̈

]ᵀ
=


k11 k12 k13
k21 k22 k23
k31 k32 k33
k41 k42 k43


 G̈x
G̈y
φ̈

 ,

(4)
where

d̈k =
(
ḋk − ḋ(k−1)

)
/ ∆t , (5)

ḋk =
(
dk − d(k−1)

)
/ ∆t , (6)

θ̈k =
(
θ̇k − θ̇(k−1)

)
/ ∆t , (7)

θ̇k =
(
θk − θ(k−1)

)
/ ∆t . (8)

∆t = tk − t(k−1) is the time interval between instants k
and k − 1. The interaction matrix J in (4) maps the input
accelerations to the deformation d̈ and rotation θ̈ acceler-
ations of the DBB by means of 12 parameters. Nine of
them vary depending on the object’s mechanical properties
and the grippers’ configuration. We consider that the rotation
accelerations are small, and therefore centrifugal effects can be
neglected. This makes DBB deformations independent from
DBB rotations, i.e. k13 = k23 = k33 = 0. The intuition
behind this proposal is that the dynamics of deformation
can be approximated with sufficient accuracy by this linear
model. Given that the dimensions of the BB and, therefore,
the dimensions of the object are constrained, as we describe
in Section IV-C the set of deformation states is bounded.

Once we have described the main aspects of the model, we
need to connect it with the actuators that produce the required
inputs. Next equations show how the grippers accelerations in
the global reference are computed from G̈x, G̈y and φ̈:

p̈i = R (c̈BBt + φ̈× pBBi + φ̇× (φ̇× pBBi )

+ 2φ̇× ṗBBi +
G̈ ◦ sgn(pBBi )

2
) , (9)

pBBi = Rᵀ (pi − c) , (10)

R =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (11)

where c̈BBt ∈ R3 is the target horizontal acceleration of the
BB centroid in the BB reference (c̈BBtz = 0, by convention),
R ∈ SO(3) is the rotation matrix from the BB to the global
coordinate systems, ‘×’ is the cross product operator, ‘◦’ is
the element-wise product operator and pBBi is the position
of gripper i in the BB reference. Equation (9) represents the
acceleration of the grippers as if they were connected to a
rigid BB (see [25, eq. (6.10)], about the linear acceleration
of a manipulator according to the rigid body dynamics).
However, the last term corrects the resulting acceleration with
the deformation inputs to the DBB [24]. The main purpose
of this correction term is to preserve the action-counteraction
balance of the system (see Remark 1). This balance allows
preventing global displacements of the BB, when deforming
it, by applying the half of the traction/compression inputs from
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opposite directions, at each of the two horizontal axes of the
BB reference frame.

One of the most prominent advantages of this model, in
contrast with the 2D counterpart, is that it does not only
allow to predict horizontal deformations and rotation around z
from the inputs G̈ and φ̈, but also the vertical deformation of
the object’s BB. Besides allowing to achieve specific config-
urations of the BB in 3D, this kind of deformation control
can be useful for collision avoidance. For instance, if an
obstacle in height is encountered and the imposed constraints
are satisfied, the system can surmount the obstacle instead of
going around it, and reduce the traveled distance. However,
in case a more conservative behavior is sought, in which the
bounding box never goes over the incoming obstacles, the
user can increase the safety distance or constrain the minimum
vertical dimension as we will explain later (see Sections IV-B
and IV-C).

Remark 1: Note that at least one positive and one negative
component of the element-wise multiplication G̈ ◦ sgn(pBBi )
must exist for the two non-zero components of G̈. If this con-
dition is satisfied, the action-counteraction balance is preserved
for each BB horizontal axis.

Next proposition provides the general rule for guaranteeing
the action-counteraction balance as described in Remark 1.

Proposition 1: Consider a set of N ≥ 3 grippers carrying a
deformable object. These grippers are positioned so that they
are separated less than π radians from each of the neighboring
ones, around the object’s BB centroid c. With this setup, the
action-counteraction requirement is met at each BB horizontal
axis for any possible orientation of the BB reference frame
and the rotated inputs.

Proof 1: According to Remark 1, the positive and negative
contributions of the non-zero components of G̈ must be
performed by, at least, one gripper each. If the grippers are sep-
arated less than π radians from each of the neighboring ones,
three quadrants of every possible BB reference frame will
always include a gripper. Therefore, the action-counteraction
balance will always hold.

B. Model identification

In this section, we describe the model identification problem
in terms of accelerations, with additional details and further
analysis with respect to our previous work [24]. As we men-
tioned in the previous section, 9 parameters of the DBB model
vary according to the particular object that is transported, the
number of grippers and the relative position of the grippers
with respect to the object. This implies that they must be
obtained for each case. The most basic identification strategy
consists in taking 3 different measurements of d̈ and θ̈ from
randomly chosen input actions G̈ and φ̈. Then, an estimate of
the model parameters would be obtained by solving the system
of equations. However, this method is highly sensitive to errors
coming from the sensing devices and the specificity of the
measurements set, and in general produces low quality results.
An ordinary least-squares approach improves the quality of the

previous solution by linearly adjusting the parameters from a
set of S > 3 measurements:

[k11, k12, ..., k43]ᵀ = (Aᵀ A)−1Aᵀ b , (12)

A = blkdiag(

 G̈x1 G̈y1
...

G̈xS G̈yS

 ,

 G̈x1 G̈y1
...

G̈xS G̈yS

 ,

 G̈x1 G̈y1
...

G̈xS G̈yS

 ,

 G̈x1 G̈y1 φ̈1
...

G̈xS G̈yS φ̈S

) , (13)

b = [d̈x1, d̈x2, ..., d̈xS , d̈y1, ..., d̈yS , d̈z1, ..., d̈zS , θ̈1, ..., θ̈S ]ᵀ ,
(14)

with A ∈ R4S×9 and b ∈ R4S .
Although this technique is able to diminish the errors

coming from sensor noise and local effects, created by some
measurements, the particular choice of measurements and
its quantity still affect the accuracy of the resulting DBB
model. We obtain a convenient selection of measurements
by applying the observability index maximization technique.
Observability indexes derive from the alphabet optimalities,
and they provide statistical information about the numerical
conditioning of the model and its variance [26]. The field
of robot calibration covers most of the approaches that have
exploited the observability index maximization, for purposes
like improving the robustness of calibration to sensor noise
[27] or for selecting the index that yields the most accurate
robot calibrations [28], among other applications.

Let us denote σr ≤ σr−1 ≤ ... ≤ σ1 the r singular values
of the regressor matrix A. The five observability indexes we
study are computed as [28]: O1 = (σr σr−1 ... σ1)1/r/S1/2,
O2 = σr/σ1, O3 = σr, O4 = σ2

r/σ1 and O5 =
(
∑r
i=1 1/σi)

−1. O1 represents the volume of a hyperellipsoid
in which the singular values correspond to the length of the
axes. It is an indicator of the data scatter, i.e. the exploration
of the parametric space. Instead of measuring the size of the
hyperellipsoid, O2 quantifies the ratio between the shortest
and the largest axes. In other words, it shows how well
explored some of the parameters are in comparison with the
rest. O3 indicates the least explored parameter (worst case).
O4 is the combination of O2 and O3, and O5 is the harmonic
mean of the singular values divided by the number of model
parameters.

In order to maximize these indexes we apply Algorithm
1, which is based in the DETMAX algorithm [29]. First, we
generate a set of candidate inputs η with different combina-
tions of G̈x, G̈y and φ̈. Starting with an initial experiment
design of S random input combinations from η, the algorithm
maximizes an observability index by continuously exchanging
inputs (rows of A) between the experiment design and η.
The process stops when the index converges to a maximum
value, up to a user-defined tolerance. Then, we obtain an
optimal matrix A and, by applying the input combinations it
contains to the system, the matrix of measurements b. Finally,
we compute from (12) the parameters of the DBB model.
In contrast to Mitchell’s proposal, our algorithm considers a
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constant experiment size, and instead of obtaining D-optimal
experiment designs we optimize the design by maximizing an
observability index.

Algorithm 1 Maximize an observability index O.
1: Odiff ←∞
2: O−1 ← 0
3: optimStop← tolerance
4: exp← S random inputs from η
5: while Odiff > optimStop do
6: Oprev ← 0
7: for i = 1, ..., size(η) do
8: newExp← [exp, ηi]
9: O ← computeIndex (newExp)

10: if Oprev < O then
11: κ← i # auxiliary variable
12: Oprev ← O
13: end if
14: end for
15: exp← [exp, ηκ] # add input that maximizes O
16: for j = 1, ..., S + 1 do
17: newExp←

[
exp1, ..., expj−1, expj+1, ..., expS+1

]
18: O ← computeIndex (newExp)
19: if Oprev > O then
20: κ← j
21: Oprev ← O
22: end if
23: end for
24: exp←

[
exp1, ..., expκ−1, expκ+1, ..., expS+1

]
# remove

input that less diminishes O
25: O ← computeIndex (exp)
26: Odiff ← (O −O−1)
27: O−1 ← O
28: end while
29: return O, exp

This technique allows obtaining suitable DBB models from
a reduced set of measurements, which we select in advance to
the model identification and the task execution. A comparative
analysis of the different observability indexes, in terms of
utility and performance, is shown in Section V-A. In that
section we also study how the experiment size S affects the
DBB model accuracy, and we justify the selection of O1 for
obtaining the most appropriate DBB models. In the studied
test cases, we have realized that a DBB model with constant
parameters, identified before performing the task, performs
well the transport objectives. Even if not considered here, it
could also be interesting to study the effects of updating the
model along the manipulation.

IV. CONTROLLER FOR DEFORMABLE OBJECT TRANSPORT

A. Nominal control system

The control actions must steer the system to the desired
configuration, reducing to zero the errors ec (1), ed (2) and eθ

(3). We propose the following set of nominal controllers for
mobile manipulators with double-integrator dynamics:

G̈ =− k1d ed − k2d ḋ , (15)

φ̈ =− k1r eθ − k2r θ̇ , (16)

c̈BBt =Rᵀ(−k1t ec − k2t ċ) , (17)

where k1d, k2d, k1r, k2r, k1t and k2t are positive control gains.
We aggregate the nominal control inputs in a single column
vector

un = [G̈x, G̈y, φ̈, c̈
BB
tx , c̈BBty ]ᵀ . (18)

Note that these controllers are centralized in order to drive
the system with tightly coordinated actions, required in ma-
nipulation tasks as the ones we tackle.

B. Obstacle avoidance with control barrier funcion

Since collision avoidance is not explicitly accounted by the
nominal controllers, we introduce a flexible, minimally inva-
sive and robust solution to prevent collisions with obstacles
in the environment. In particular, we consider an optimization
method based on a CBF, which regulates the nominal control
inputs so that the system is always in a safe state. We adopt
a modified version of the centralized approach proposed by
Wang et al. [21], where multiple robots with intersecting
trajectories are able to reach target positions while avoiding
robot-to-robot and robot-to-obstacle collisions. In our case, the
transported deformable object makes collision avoidance more
challenging to be guaranteed, as we must also consider object-
to-obstacle collisions. Besides, we do not deal explicitly with
robot-to-robot collisions, since they are implicitly avoided by
constraining the minimum BB dimensions, as we will describe
in the next section.

Firstly, we define a set of virtual points pvl ∈
R3, l = 1, ..., L uniformly distributed over the faces of the
BB. The dynamics of these points are linked to the DBB as

p̈vl = c̈BBt + θ̈ × pvl + θ̇ × (θ̇ × pvl) + 2θ̇ × ṗvl

+ (pvl − [0, 0, dz/2]ᵀ) ◦ d̈� d . (19)

where ‘�’ is the element-wise division. Note that the top face
of the BB is constant in height, due to the fact that the grippers
move in the 2D plane. This is the reason why we include
the −[0, 0, dz/2]ᵀ term, that shifts the zero vertical movement
plane to the top face of the BB. Then, we can write an affine
system

ẋl = f(xl) + g(xl)u , (20)

where xl = [pvl, ṗvl]
ᵀ and f(xl) and g(xl) are locally

Lipschitz continuous functions. We propose the following
criterion for collision avoidance of the system (20):

‖pvlj‖+

∫ tf

t0

ṗ⊥vlj(t)dt ≥ Dmin
lj , (21)

where pvlj = pvl − qBBj , qBBj = Rᵀ(qj − c),

ṗ⊥vlj =
pᵀ
vlj

‖pvlj‖
ṗvlj (22)
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is the relative velocity between pvl and qBBj projected in the
normal direction, ṗvlj = ṗvl− q̇BBj , q̇BBj = Rᵀ(q̇j − ċ) and

tf =
ṗ⊥vlj(tf )− ṗ⊥vlj(t0)

αl
+ t0 . (23)

At time tf the points completely stop (ṗ⊥vlj(tf ) = 0) when
applying the maximum deceleration αl = ‖p̈vl‖∞, and Dmin

lj

is the minimum allowed distance between the virtual point pvl
and the obstacle qBBj . Note that we take equations (20), (21),
(22) and (23) as proposed by Wang et al. [21]. By substituting
(23) and (22) in (21) and solving the definite integral, we
obtain the candidate CBF

hlj = 2αl (‖pvlj‖ −Dmin
lj )− ṗ⊥2vlj . (24)

According to its definition [30], hlj is a suitable CBF if the
following expression is satisfied:

sup
u

[Lfhlj(xl) + Lghlj(xl)u] ≥ −ε(hlj(xl)) , (25)

where L stands for the Lie derivative, u ∈ R5 similarly to (18)
is the control input and ε is an extended class K∞ function.
Then, we apply this definition to our candidate CBF to obtain
the set of linear constraints

pᵀ
vljṗvlj

pᵀ
vlj

‖pvlj‖
dMJextu ≤

‖pvlj‖
2

ε(hlj(xl)) + αlp
ᵀ
vljṗvl

− pᵀ
vljṗvlj

pᵀ
vlj

‖pvlj‖
(θMpvl + θMV ṗvl) , (26)

where

dM =

 pvlx

dx
0 0 −pvly 1 0

0
pvly

dy
0 pvlx 0 1

0 0 pvlz

dz
− 0.5 0 0 0

 , (27)

Jext =

[
J 04×2

02×3 I2×2

]
, (28)

θM =
[
−θ̇2,−θ̇2, 0

]
I3×3 , (29)

θMV =

 0 −2θ̇ 0

2θ̇ 0 0
0 0 0

 . (30)

These equations constraint the system to maintain a safety dis-
tance Dmin

lj with every obstacle point qj . Therefore, obstacles
are treated as spheres of radius Dmin

lj , but only for collision
avoidance. The function ε determines how close the system
will remain to the safety boundary when avoiding collisions.

C. Quadratic-programming controller

The nominal control inputs un must be modified to avoid
collisions when obstacles intersect with the desired route.
We achieve the collision-free configurations by means of a

quadratic-programming (Q-P) based controller, which includes
the CBF:

Given un,pvl, ṗvl,q
BB
j ,J,d, θ̇, Dmin

lj , αl, ∀l, j

minimize
u

ξ =

5∑
i=1

kwi(ui − uni)2 (31)

subject to:
Alju ≤ blj , ∀l, j, l = 1, ..., L, j = 1, ..., J ,
‖u‖∞ ≤ αl, i = 1, ..., N

where kwi > 0,∀i are control weights that satisfy∑5
i=1 kwi = 1, L is the number of virtual points on the

BB, J is the number of points describing the obstacles,

Alj =pᵀ
vljṗvlj

pᵀ
vlj

‖pvlj‖
dMJext , (32)

blj =
‖pvlj‖

2
ε(hlj(xl)) + αl p

ᵀ
vljṗvl

− pᵀ
vljṗvlj

pᵀ
vlj

‖pvlj‖
(θMpvl + θMV ṗvl) . (33)

The kwi constants allow regulating the effects of the Q-P
controller over the nominal controller. For instance, if we take
higher values of kw1 and kw2 than those of kw3, kw4 and
kw5, nominal rotations and global displacements will have
preference over nominal deformations for being modified.

We can also implement additional constraints in this struc-
ture to avoid overstretching the object and also to limit the
rotation and translation velocities. If we assume uniform ac-
celerations between instants k and k+1, the linear inequalities 2

(
(dmax − dk)/∆t2 − ḋk/∆t

)
(θ̇max − θ̇k)/∆t

(ċmax − [ċkx, ċky]ᵀ)/∆t

 ≥ Jext u , (34)

 2
(

(dmin − dk)/∆t2 − ḋk/∆t
)

(θ̇min − θ̇k)/∆t
(ċmin − [ċkx, ċky]ᵀ)/∆t

 ≤ Jext u , (35)

guarantee that d, θ̇ and ċ will be bounded between a set of
maximum (dmax, θ̇max, ċmax) and minimum (dmin, θ̇min,
ċmin) defined limits. Note that the constraint over the BB
vertical dimension can also prevent the object from touching
the ground, since the grippers travel at constant height.

By means of this controller, we obtain the closest control
input to the nominal one that satisfies the constraints from the
CBF and the linear inequalities (34) and (35). The proposed
centralized formulation induces tightly coordinated motions
of the robots that aim at preserving the deformable object
without damages. In addition, we consider a small number of
mobile manipulators in the studied practical cases. Therefore,
the centralized version of the CBF and the Q-P controller
seems appropriate for the current state of the method.

V. RESULTS

A. Observability indexes analysis

In this section, we will identify the observability index that
provides the most appropriate DBB model from a reduced
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set of measurements, for different grippers configurations and
materials. We evaluate the quality of a model from its mean
squared error, which is computed as

MSE =
1

S

S∑
i=1

([d̈i, θ̈i]− [
˜̈
di,

˜̈
θi])

2 , (36)

where [
˜̈
di,

˜̈
θi] are the outputs predicted by the model.

Then, we start by creating a pool of 104 random combina-
tions of G̈x, G̈y and φ̈z . We divide this pool in four sets of
2500 input combinations, and we apply each set to a different
configuration of the system:

1) The first configuration consists in a rectangular (2 × 3
[m]) mesh of mass–spring–damper elements (similar to
the one in Fig. 1), with 77 nodes and stiffness, damping
and nodal mass of 20 [N/m], 0.5 [N·s/m] and 0.025 [kg]
respectively. This object is held by four grippers at the
corners of the rectangle.

2) The second configuration includes the same object than
the first one, but it is held by three grippers located as
follows: two of them grasp the corners of one of the 3
[m] side, while the remaining one grasps the node in the
middle of the opposing 3 [m] side of the mesh.

3) The third configuration includes the same object, but it
is held by five grippers: four of them grasp the corners
of the mesh, while the remaining one grasps the node in
the middle of one of the 3 [m] side of the mesh.

4) The fourth configuration is the same than the first one
except for the object: the stiffness of the mesh elements
is set to 200 [N/m].

After that, the outputs d̈x, d̈y , d̈z and θ̈ are obtained. The
system configurations included in the pool of inputs and
outputs provide sufficient depth for the analysis, since we
consider similar cases in the next sections. The next step
consists in creating an initial set of S ≥ 3 inputs, by taking
random samples from the pool. Algorithm 1 is then executed
to maximize each observability index, by iteratively adding
and removing inputs from the experiment design. Once the
algorithm converges (tolerance = 10−3 is chosen), the model
is obtained from the selected inputs and the resulting outputs
with least-squares.

Figure 2 shows the results of experiment designs in the
range 3 ≤ S ≤ 50. Due to the fact that the index optimization
algorithm is affected by local maxima, the presented values are
the mean of 20 maximization executions with different initial
designs. Note that O2, O3, O4 and O5 present monotonically
increasing values, while O1 first increases up to 0.81, for
7 measurements, and then shows a slight continuous decay,
hardly noticeable due to the scale. The mean squared errors
of the resulting models are also depicted. It can be seen that the
errors obtained with the O1 maximization are lower than the
ones obtained with O2, O3 and O4 in the interval 3 ≤ S ≤ 20
(which is, in practice, our range of interest in the number of
measurements), and very similar to the ones of O5 at some
points. In addition, the error of the model with O1 follows the
opposite direction to the evolution of the index values. This is
the behavior we seek: the O1 value evolution indicates when

Fig. 2. Comparison between the maximization of indexes O1 (blue ‘+’),
O2 (orange ‘∗’), O3 (yellow ‘◦’), O4 (purple ‘�’) and O5 (green ‘×’),
for experiment designs of increasing size S. In the upper plot, the mean
observability index values of 20 simulations with different initial designs are
depicted. In the lower plot, the mean values of the resulting models MSE,
from the previous simulations, are shown.

Fig. 3. Comparison of 20 different experiments of size S = 7, created by
maximizing the observability index O1 (thick lines) and selecting random
inputs (thin lines). The index values (orange) and the mean squared error of
the models (blue) are shown, sorted into increasing values of the error.

to stop taking measurements for getting a representative model
with minimal error.

An additional test is carried out for verifying the effec-
tiveness of O1 and the maximization algorithm. Figure 3
represents the value of O1 (thick dashed line) and the mean
squared error of the resulting DBB model (thick blue line) after
20 index maximizations, which are executed with different
initial experiment designs of size S = 7. For comparison,
the values of O1 (thin dotted line) and the mean squared
error (thin dashed line) of 20 different random experiment
designs with S = 7 are shown. The index-error pairs are
sorted into increasing values of the error. We can see that the
models obtained through index maximization are much more
homogeneous and more accurate. In addition, the system is
explored in higher depth and, therefore, better characterized,
as the observability index values indicate.

B. Test with static obstacles

We evaluate our proposal in three different simulation
scenarios in Matlabr. The first scenario includes three static
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Fig. 4. The goal is to steer, without collisions, the object (blue mesh) from the initial position at [0, 0] meters to the target position at [12, 5] meters. Images
at the left side correspond to our previous method [24], while at the right side we show the new method with the Q-P controller. The top and middle images
show the top and side views of the test circuit, with the grippers at the corners of the sheet and their trajectories in orange. The bounding boxes of the object
over time (blue boxes), the obstacles (brown spheres), the sensors range (orange circumference) and the ideal transport route (green dashed line) are also
depicted. The bottom images show the absolute minimum distances between the mesh nodes and the nearest obstacle center. We subtract the radius of the
nearest obstacle to check whether the node is inside (negative distance) or outside the obstacle (positive distance). We can see that our previous method is
unable to avoid collisions at some instants, and we have no control over the shape and the orientation of the object. In contrast, the proposed method prevents
collisions with the obstacles and preserves the initial dimensions and orientation of the box.

obstacles, and allows us to compare the Q-P controller with
our previous method for agents with single integrator dynamics
[24]. We deploy a team of N = 4 robots grasping a 2 × 3
[m] rectangular sheet by its four corners, at 1.7 [m] height.
The sheet is modeled with a mesh of mass-spring-damper
elements of 20 [N/m] stiffness, 0.5 [N·s/m] damping and 77
nodes with a 0.025 [kg] nodal mass. Note that these properties
are not known by the system. Instead, we obtain the DBB
model by maximizing the O1 index from a set of S = 7
measurements. The control parameters are set as follows:
k1d = 0.4, k2d = 1, k1r = 1, k2r = 2.5, k1t = 0.01,
k2t = 0.3, ε = 0.5hlj , αl = 10 [m/s2], Dmin

l1 = 0.55 [m],
Dmin
l2 = 0.95 [m], Dmin

l3 = 0.65 [m], kw1 = kw2 = 0.2,
kw3 = 0.1, kw4 = kw5 = 0.25 and R = 4 [m]. The
limit values to avoid overstretching and excessive velocities
are set as dmax = [4, 6, 1.5] [m], dmin = [0.5, 1, 0.1] [m],
θ̇max = −θ̇min = π [rad/s] and ċmaxx = ċmaxy = −ċminx =
−ċminy = 0.5 [m/s]. It is worth noting that fine tuning of the
control parameters is not needed to successfully complete the
task. In addition, we define L = 488 evenly distributed virtual
points over the BB faces. The goal of the task is to transport the
sheet without collisions to a target position in [12,5] meters,
while getting the initial dimensions and orientation of the BB
at the end of the test. Figure 4 shows the performance of
our method in the referred task compared with the previous

work. We can see that the Q-P controller is able to achieve
the desired configuration of the object without collisions, while
our previous approach fails in the latter purpose and it does not
allow controlling the shape and orientation of the object. The
bottom plots, which display the minimum distance between
any mesh node and the nearest detected obstacle, illustrate the
failure of the previous method and the success of the new one.
When the value is negative, it means the node has penetrated
that distance inside the volume of the obstacle. From this test
we see that the impact of the imposed route in our previous
method is drastically reduced in the current proposal, with a
more flexible and robust formulation.

C. Test with dynamic obstacles

In the second test scenario we evaluate the system’s per-
formance under dynamic obstacles. Again, a team of N = 4
robots grasps a deformable sheet with the same mechanical
properties than in the previous test, but in a different configu-
ration. The DBB model is obtained following the same proce-
dure, and the control parameters are equal except k1d = 1.0,
k2d = 2.0, k1r = 1.5, k2r = 3.0, αl = 15 [m/s2]. With these
changes we get a faster behavior of the nominal controller, and
the system reacts better to the incoming obstacles. The goal is
to transport the sheet without collisions to the target position
in [12,5] meters, while simultaneously reducing a 20% the
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Fig. 5. From top to bottom and left to right, we show six instants (t = 0,10,40,60,80,150 [s]) of the second test. The system reaches the position [12,5]
meters while avoiding collision with two dynamic and one static obstacles (see the video for full sequence).

Fig. 6. At the top, absolute minimum distances between the mesh nodes
and the nearest obstacle, at different time instants in the second test case. At
the bottom, values of the deformation, orientation and position control errors.
Note that the position error ec is scaled by 0.1.

horizontal y-dimension of the BB, increasing a 20% the x-
dimension and getting a 0 degrees orientation of the BB. In
this case, we consider two dynamic and one static obstacles.
Figure 5 shows six different snapshots, while Fig. 6 shows the
absolute minimum distances between the mesh nodes and the
nearest obstacle as well as the control errors. Despite the small
bounces starting at 50 [s] and stopping around 70 [s], when
the second obstacle approaches the system, we can see that
the object reaches the desired configuration without collisions.
Note that the robots stop detecting obstacles at t = 84 [s],

which is the reason why the minimum distances plot shows
no values from there on. The average computational time of
the algorithm is 0.016 [s], which seems fast enough for a wide
range of practical cases with real time response. This fact is
verified with the results we show in the next section.

D. Test with realistic conditions

Next we tackle a transport task in a scenario with realistic
conditions. The goal of the task consists in transporting a
0.40×0.55 [m] rectangular cloth-like object by its four corners
to a specific position, preserving the initial orientation of the
BB and expanding a 20% its x-y dimensions. We add random
noise in the position of the robots, with 0.01 [m] amplitude,
and the robots’ linear velocities are saturated to 0.05 [m/s]. The
algorithm also runs with real-time measurements. It is worth to
mention that the robots follow unicycle kinematics in this case,
instead of double-integrator ones. Therefore, we integrate the
acceleration outputs and then transform the resulting velocities
to the unicycle model by means of a diffeomorphism [31].
An agent acting as a static obstacle is placed between the
initial and the goal positions. The control parameters are set
in the following manner: k1d = 0.02, k2d = 0.5, k1r = 0.01,
k2r = 0.3, k1t = 0.0005, k2t = 0.06, ε = 5000h3lj , αl = 0.05
[m/s2], Dmin

l1 = 0.14 [m], kw1 = kw2 = kw3 = kw4 = kw5 =
0.2 and R = 5 [m]. The limit values to avoid overstretching
and excessive velocities are set as dmax = [0.6, 0.9, 1] [m],
dmin = [0.15, 0.15, 0.01] [m], θ̇max = −θ̇min = 1.8 [rad/s]
and ċmaxx = ċmaxy = −ċminx = −ċminy = 0.05 [m/s]. In
addition, we define L = 152 evenly distributed virtual points
over the BB faces.

Figure 7 shows four different time instants of the simulation.
We can see that the robots are able to drive the virtual
deformable object from the initial position, at the bottom left
side, to the final position at the top right side of the arena,
avoiding the brown area (with 0.14 [m] radius) around the
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Fig. 7. From top to bottom and left to right, we show four instants (t =
0,100,150,450 [s]) of the simulation with realistic conditions. We can see
that the virtual object is driven to the desired configuration while avoiding
collisions with the static robot, placed between the initial and the final position.

Fig. 8. At the top, absolute minimum distances between the nodes repre-
senting the object and the obstacle, at different time instants in the realistic
case. At the bottom, components of the deformation, orientation and position
errors. The position error ec is again scaled by a 0.1 factor.

obstacle robot in the process. Figure 8 shows the minimum
node-obstacles distances, always above cero, and the control
errors, which tend to zero over time. These results confirm that
the proposed DBB model is valid and useful for computing
the dimensions, orientation and position of the BB under the
control actions. Also the Q-P controller we present exploits
the model successfully to achieve the control goal in all the
tested cases.

A video with additional material and results can be found
as supplementary material.

VI. CONCLUSION

We have presented a method for achieving a desired con-
figuration of a large deformable object in terms of position,

dimensions and orientation of its bounding box, without col-
lisions. Our approach is based on a 3D deformable bounding
box model for mobile robots that manipulate the object with
double-integrator dynamics. It allows predicting the object
evolution in shape and orientation under specific control
inputs. We exploit this model to formulate a set of nominal
controllers, which steer the object to the target configuration.
Then, we propose a control barrier function that guarantees
collision avoidance by means of an integrated quadratic-
programming controller. This controller includes additional
linear constraints that limit the control inputs, so that the
bounding box dimensions and the translation and rotation
velocities remain in the admissible ranges. Simulation results
we report show that method successfully completes different
kinds of transport tasks, in which the objects are steered
to specific configurations in environments with static and
dynamic obstacles.

With respect to the future research lines, we think that
a deep learning-based strategy, trained with a complete set
of cases and combined with CBFs, could be comparable
to our system in terms of performance. Alternative control
strategies to investigate are distributed or hybrid approaches
for increasing the generality and resilience of the method
in practical cases with a high number of manipulators. In
particular, related works to be considered are the distributed
controllers Wang et al. propose [21] or the distributed CBFs
by Tan and Dimarogonas [32]. Concurrent design could be
another interesting line of research [33]. Following the Design
For Control (DFC) technique, the number of mobile manip-
ulators, their parameters (maximum velocities, accelerations,
load capacity, etc.), the grasping points and the model could be
optimized in parallel to the design of the control architecture.
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